Add like
Add dislike
Add to saved papers

Molecular detection of antimicrobial resistance in local isolates of Staphylococcus epidermidis from urinary tract infections in Faisalabad region of Pakistan.

Staphylococci are one of the foremost causes of urinary tract infections (UTIs) in humans. The emergence of multiple drug resistance (MDR) among Staphylococci poses serious challenges in antimicrobial therapy for UTIs. Most work has been done on S. aureus while coagulase negative Staphylococci (mainly S. epidermidis) are often neglected. This study was conducted to establish a baseline profile of drug resistance in local S. epidermidis isolates from UTIs. Eighty urine samples were collected from suspected UTIs cases and screened for S. epidermidis. Twenty isolates were suspected as S. epidermidis based on colony morphology and Gram staining. Molecular detection by polymerase chain reaction (PCR) confirmed 13 isolates as S. epidermidis. Using disc diffusion method, phenotypic drug resistance of the isolates was observed towards erythromycin (100 %), gentamycin, azithromycin and tetracycline (92.3 %), ampicillin and oxytetracyclin (84.6 %), amikacin and srteptomycin (76.9 %), methicillin (69.2 %), cephradine, cefaclor and cefazolin (53.8 %) and vancomycin (15.3 %). Eighteen most commonly reported genes responsible for conferring resistance towards these drugs were targeted by PCR: among these tetM gene was found most prevalent (46.1 %) followed by tetK (30.7 %), aac(6')/aph(2") (30.7 %), aacA-aphD (23 %), ermA (23 %), blaZ (23 %), mecA (23 %) blaTEM-1 (23 %), MeccA (23 %) and mecA (15.3 %). No gene fragment for vancomycin resistance was detected. The salient finding was that all S. epidermidis isolates were multiple drugs resistant as they showed resistance against at least three structurally different antimicrobial agents. It is concluded that in addition to the mostly used antimicrobial agent vancomycin, the cephalosporins including cephradine, cefaclor and cefazolin are also the drugs of choice against UTIs caused by S. epidermidis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app