JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Heat shock protein 90 inhibitors induce functional inhibition of human natural killer cells in a dose-dependent manner.

Heat shock protein 90 (Hsp90) is a ubiquitously expressed ATP-dependent molecular chaperone across all species that helps to the correct the folding of many proteins related to important signaling pathways. Tumor cells expressing Hsp90 have more ATP-binding affinity than normal cells. Many correlative inhibitors have been developed to promising anti-tumor strategies and have been evaluated in clinical trials. However, the effect of Hsp90 inhibitors on immunocytes cannot be ignored. Natural killer (NK) cells are key components of the innate immune system that play a pivotal role in tumor surveillance. The present study has investigated the potential effect of four Hsp90 inhibitors (NVP-AUY922, BIIB021, 17-DMAG, and SNX-2112) on human primary NK cells. The viability, cytotoxicity, apoptosis, phenotype, and cytokine secretion of NK cells after inhibitor treatment were assessed. The results of this study demonstrated that the inhibitors had negative effects on NK cell activity in a dose-dependent manner. The four inhibitors significantly reduced the cytotoxicity of the NK cells by decreasing viability, inducing apoptosis and down-regulating the expression of cytokines and functional receptors. These findings suggest that more attention should be given to the effect of Hsp90 inhibitors on NK cell function during clinical trials and also represent a potential immunosuppressant strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app