Add like
Add dislike
Add to saved papers

Acoustically-controlled Leidenfrost droplets.

Suppressing the Leidenfrost effect can significantly improve heat transfer from a heated substrate to a droplet above it. In this work, we demonstrate that by generating high frequency acoustic wave in the droplet, at sufficient vibration displacement amplitudes, the Leidenfrost effect can be suppressed due to the acoustic radiation pressure exerted on the liquid-vapor interface; strong capillary waves are observed at the liquid-vapor interface and subsequently leads to contact between the liquid and the heated substrate. Using this technique, with 10(5)Hz vibration frequency and 10(-6)m displacement amplitude of the acoustic transducer, a maximum of 45% reduction of the initial temperature (T0∼200-300°C) of the heated substrate can be achieved with a single droplet of volume 10(-5)l.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app