Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of high levels of dietary zinc oxide on ex vivo epithelial histamine response and investigations on histamine receptor action in the proximal colon of weaned piglets.

The aim of the study was to identify the effect of high dietary zinc oxide (ZnO) levels on the histamine-induced secretory-type response and histamine metabolism in the porcine proximal colon. After weaning at d 26, 3 diets with low (LZn), normal (NZn), and high (HZn) concentrations of zinc (57, 164, or 2,425 mg/kg) were fed to a total of 120 piglets. Digesta and tissue samples were taken from the ascending colon after 7 ± 1, 14 ± 1, 21 ± 1, and 28 ± 1 d. Partially stripped tissue was mounted in Ussing chambers, and histamine was applied either to the serosal or mucosal compartments. Tissue was pretreated with or without aminoguanidine and amodiaquine to block the histamine-degrading enzymes diamine oxidase (DAO) and histamine -methyltransferase (HMT), respectively. Gene expression and catalytic activity of DAO and HMT in the tissue were analyzed. The numbers of mast cells were determined in tissue samples, and histamine concentration was measured in the colon digesta. Colon tissue from another 12 piglets was used for functional studies on histamine H and H receptors by using the neuronal conduction blocker tetrodotoxin (TTX) and the H and H receptor blocker chloropyramine and famotidine, respectively. After serosal histamine application to colonic tissue in Ussing chambers, the change of short-circuit current (Δ) was not affected by pretreatment and was not different between Zn feeding groups. The Δ after mucosal histamine application was numerically lower ( = 0.168) in HZn compared to LZn and NZn pigs. Mast cell numbers increased from 32 to 46 d of life ( < 0.05). Further studies elucidated that the serosal histamine response was partly inhibited by chloropyramine or famotidine ( < 0.01). The response to mucosal histamine tended to be decreased when chloropyramine but not famotidine was applied from either the serosal or the mucosal side ( = 0.055). Tetrodotoxin alone or in combination with chloropyramine resulted in a similar reduction in the mucosal histamine response ( < 0.01). In conclusion, the present study could not identify marked changes in colonic histamine metabolism on dietary ZnO oversupplementation. For the first time, however, H receptors were functionally identified in the pig colon that are localized either on neurons or on cells that activate secretion via neurons. Luminal histamine can elicit a secretory-type response via these receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app