Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transferrin Receptor 1 Facilitates Poliovirus Permeation of Mouse Brain Capillary Endothelial Cells.

As a possible route for invasion of the CNS, circulating poliovirus (PV) in the blood is believed to traverse the blood-brain barrier (BBB), resulting in paralytic poliomyelitis. However, the underlying mechanism is poorly understood. In this study, we demonstrated that mouse transferrin receptor 1 (mTfR1) is responsible for PV attachment to the cell surface, allowing invasion into the CNS via the BBB. PV interacts with the apical domain of mTfR1 on mouse brain capillary endothelial cells (MBEC4) in a dose-dependent manner via its capsid protein (VP1). We found that F-G, G-H, and H-I loops in VP1 are important for this binding. However, C-D, D-E, and E-F loops in VP1-fused Venus proteins efficiently penetrate MBEC4 cells. These results imply that the VP1 functional domain responsible for cell attachment is different from that involved in viral permeation of the brain capillary endothelium. We observed that co-treatment of MBEC4 cells with excess PV particles but not dextran resulted in blockage of transferrin transport into cells. Using the Transwell in vitro BBB model, transferrin co-treatment inhibited permeation of PV into MBEC4 cells and delayed further viral permeation via mTfR1 knockdown. With mTfR1 as a positive mediator of PV-host cell attachment and PV permeation of MBEC4 cells, our results indicate a novel role of TfR1 as a cellular receptor for human PV receptor/CD155-independent PV invasion of the CNS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app