JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Assembling of Poly (3-Octyl-Thiophene) on CVD Grown Single Layer Graphene.

The interface between organic semiconductor and graphene electrode, especially the structure of the first few molecular layers at the interface, is crucial for the device properties such as the charge transport in organic field effect transistors. In this work, we have used scanning tunneling microscopy to investigate the poly (3-octyl-thiophene) (P3OT)-graphene interface. Our results reveal the dynamic assembling of P3OT on single layer graphene. As on other substrates the epitaxial effect plays a role in determining the orientation of the P3OT assembling, however, the inter-thiophene distance along the backbone is consistent with that optimized in vaccum, no compression was observed. Adsorption of P3OT on ripples is weaker due to local curvature, which has been verified both by scanning tunneling microscopy and density functional theory simulation. Scanning tunneling microscopy also reveals that P3OT tends to form hairpin folds when meets a ripple.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app