Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The application of the linear quadratic model to compensate the effects of prolonged fraction delivery time on a Balb/C breast adenocarcinoma tumor: An in vivo study.

Purpose To investigate the effect of increasing the overall treatment time as well as delivering the compensating doses on the Balb/c breast adenocarcinoma (4T1) tumor. Materials and methods A total of 72 mice were divided into two aliquots (classes A and B) based on the initial size of their induced tumor. Each class was divided into a control and several treatment groups. Among the treatment groups, group 1 was continuously exposed to 2 Gy irradiation, and groups 2 and 3 received two subfractions of 1 Gy over the total treatment times of 30 and 60 min, respectively. To investigate the effect of compensating doses, calculated based on the developed linear quadratic model (LQ) model, the remaining two groups (groups 4 and 5) received two subfractions of 1.16 and 1.24 Gy over the total treatment times of 30 and 60 min, respectively. The growing curves, Tumor Growth Time (TGT), Tumor Growth Delay Time (TGDT) and the survival of the animals were studied. Results For class A (tumor size ≤ 30 mm(3)), the average tumor size in the irradiated groups 1-5 was considerably different compared to the control group as one unit (day) change in time, by amount of -160.8, -158.9, +39.4 and +44.0, respectively. While these amounts were +22.0, +17.9, -21.7 and -0.1 for class B (tumor size ≥ 400 mm(3)). For the class A of animals, the TGT and TGDT parameters were significantly lower (0 ≤ 0.05) for the groups 2 and 3, compared to group 1. There was no significant difference (p > 0.05) between groups 1, 4 and 5 in this class. There was no significant difference (p > 0.05) between all the treated groups in class B. Conclusions Increasing total treatment time affects the radiobiological efficiency of treatment especially in small-sized tumor. The compensating doses derived from the LQ model can be used to compensate the effects of prolonged treatment times at in vivo condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app