Add like
Add dislike
Add to saved papers

Stable Somatic Gene Expression in Mouse Lungs Following Electroporation-mediated Tol2 Transposon Delivery.

Gene delivery to the lung has rapidly progressed as an important method for studying various chronic lung diseases. Viral vectors, albeit highly efficient, are limited by the host immune response. Electroporation, a well-known non-viral method, can efficiently deliver genes to the lung, but is unable to induce stable gene expression. The Tol2 transposon is another non-viral method that can induce stable gene expression by reinserting its genes into the host genome. In this study, we combined electroporation and Tol2 transposons to obtain stable, high-level gene expression in the mouse lung. Tol2 transposon plasmids (pT2A-EGFP; Tol2, pCAGGS-TP; transposase) were optimized in vitro, and the electroporation procedure (pCAG-EGFP) was optimized in mouse lungs. After optimization, a combination of electroporation plus the Tol2 transposon was used in a comparative analysis with electroporation plus pCAG-EGFP. GFP expression levels were quantified and visualized on days 4 and 7 post-electroporation. We successfully reproduced the Tol2 transposon system in vitro and the electroporation procedure in vivo. We observed sustainable GFP expression using electroporation plus the Tol2 transposon on days 4 and 7, while electroporation plus pCAG-EGFP resulted in decreased GFP expression on day 7. We were able to induce high-level, stable gene expression in mouse lungs using a combination of electroporation and the Tol2 transposon. This represents a safer method for lung gene delivery that can be used as an alternative to viral vectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app