Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Imipramine administration induces changes in the phosphorylation of FAK and PYK2 and modulates signaling pathways related to their activity.

BACKGROUND: Antidepressants can modify neuronal functioning by affecting many levels of signal transduction pathways that are involved in neuroplasticity. We investigated whether the phosphorylation status of focal adhesion kinase (FAK/PTK2) and its homolog, PYK2/PTK2B, and their complex with the downstream effectors (Src kinase, p130Cas, and paxillin) are affected by administration of the antidepressant drug, imipramine. The treatment influence on the levels of ERK1/2 kinases and their phosphorylated forms (pERK1/2) or the Gαq, Gα11 and Gα12 proteins were also assessed.

METHODS: Rats were injected with imipramine (10 mg/kg, twice daily) for 21 days. The levels of proteins investigated in their prefrontal cortices were measured by Western blotting.

RESULTS: Imipramine induced contrasting changes in the phosphorylation of FAK and PYK2 at Tyr397 and Tyr402, respectively. The decreased FAK phosphorylation and increased PYK2 phosphorylation were reflected by changes in the levels of their complex with Src and p130Cas, which was observed predominantly after chronic imipramine treatment. Similarly only chronic imipramine decreased the Gαq expression while Gα11 and Gα12 proteins were untouched. Acute and chronic treatment with imipramine elevated ERK1 and ERK2 total protein levels, whereas only the pERK1 was significantly affected by the drug.

CONCLUSION: The enhanced activation of PYK2 observed here could function as compensation for FAK inhibition.

GENERAL SIGNIFICANCE: These data demonstrate that treatment with imipramine, which is a routine in counteracting depressive disorders, enhances the phosphorylation of PYK2, a non-receptor kinase instrumental in promoting synaptic plasticity. This effect documents as yet not considered target in the mechanism of imipramine action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app