Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells.

Biochimie 2016 Februrary
It is well known the role of oxidative stress in the pathophysiology of Alzheimer's disease (AD) and of other neurodegenerative pathologies. We have previously documented that Amyloid beta peptide (1-42) (Abeta) dependent-oxidative modifications affect red blood cell (RBC) morphology and function. Experimental studies show that caffeine (CF) consumption is inversely correlated with AD. In this study, we investigated the role played by RBC in the protective mechanism elicited by CF against Abeta mediated toxicity. PS exposure levels by FACS analysis, as well as protein band 3 functionality analysis, indicated that CF at 100 μM protected against Abeta-mediated membrane alterations, which are known to occur in AD. Moreover, CF counteracts inhibition of ATP release from RBC by Abeta, restoring its ability to modulate vasodilation. Concurrently, analysis of protein kinase C (PKC) and caspase 3 activities, responsible for cytoskeleton alterations, revealed that unlike to caspase 3, PKCα activation induced by Abeta was fully abolished by CF through a mechanism involving Acetylcholinesterase (AChE), located on external face of RBC plasma membrane. These results provide support for the hypothesis concerning the protective role of CF in AD patients could include also a peripheral mechanism involving RBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app