Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of NO-cGMP pathway in ovine cervical relaxation induced by Erythroxylum caatingae Plowman.

Erythroxylum caatingae Plowman has a myorelaxing effect on smooth muscle tissue. We investigated the effect of the crude ethanolic extract of E. caatingae Plowman (Ec-EtOH) on the contractility of the ovine cervix. In an isometric system, circular strips were subjected to 90mM potassium (K(+)) or 30μM carbamylcholine (CCh)-induced contraction. We then exposed the tissue to cumulative concentrations of Ec-EtOH (1-729 μg/ml). In other bath solutions, the tissues were exposed to l-NG-nitroarginine methyl ester (l-NAME; 100μM), l-NAME (100μM)+l-arginine (300μM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ; 5μM), 4-aminopyridine (4-AP; 3mM), tetraethylammonium (TEA; 0.3mM), glybenclamide (1μM), atosiban (10μM) or verapamil (3μM), followed by the addition of Ec-EtOH (1-729 μg/ml). We also evaluated the effect of cervical Ec-EtOH infusion (2mg) on cervical contractility in vivo. Ec-EtOH decreased cervical contractility induced by K(+) or CCh, and 729 μg/ml Ec-EtOH decreased 85.4±5.1% the amplitude of basal contractility in vitro, with an EC50 of 17.9±3.7 μg/ml. This effect of Ec-EtOH was prevented by l-NAME or ODQ. l-arginine impaired the blunting effect of l-NAME on cervical relaxation caused by Ec-EtOH. However, the potassium channel blockers 4-AP, TEA, and glybenclamide did not modify this myorelaxation triggered by Ec-EtOH. Ec-EtOH also decreased acetylcholine-induced contractions in tissue preincubated with verapamil. In addition, Ec-EtOH decreased ovine cervical contractions in vivo. Thus, Ec-EtOH had a relaxant effect on ovine cervical contractions. This may involve the nitric oxide signal, mediated by cGMP cellular transduction, and be related to intracellular calcium sequestration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app