Add like
Add dislike
Add to saved papers

CORRECTING INHOMOGENEITY-INDUCED DISTORTION IN FMRI USING NON-RIGID REGISTRATION.

Magnetic field inhomogeneities in echo planar images (EPI) can cause large distortion in the phase encoding dimension. In functional MRI (fMRI), this distortion can shift activation loci, increase inter subject variability, and reduce statistical power during group analysis. Distortion correction methods that make use of acquired magnetic field maps have been developed, however, field maps are not always acquired or may not be available to researchers. An alternative approach, which we pursue in this paper, is to estimate the distortion retrospectively by spatially registering the EPI to a structural MRI. We describe a constrained non-linear registration method for correcting fMRI distortion that uses T1-weighted images and does not require field maps. We compared resting state results from uncorrected fMRI, fMRI data corrected with field maps, and fMRI data corrected with our proposed method in data from 20 subjects. The results show that the estimated field maps were similar to the acquired field maps and that the proposed method reduces the overall error in independent component location.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app