Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Glucose Uptake Is Decreased in Affected Lower Leg Muscles of Hemiparetic Persons during Level Walking.

Stroke patients suffer from gait disturbance due to altered leg muscle actions. Many kinesiological studies have investigated muscle actions, but the metabolic activity of muscles in stroke patients remains to be investigated. We therefore evaluated energy consumption in lower extremity muscles during level walking in hemiparetic individuals. Glucose uptake was measured by positron emission tomography (PET) using (18)F-fluorodeoxyglucose ((18)F-FDG) in eight hemiparetic (mean age: 56 years) and 11 healthy (mean age: 26 years) participants. Standardized uptake ratio (SUR) was computed in each muscle to express the (18)F-FDG-uptake level. SUR was compared across gluteal, thigh, and lower leg muscles and across individual muscles within each muscle group. For each muscle, SUR was compared among the paretic limb of hemiparetic participants, the non-paretic limb of hemiparetic participants, and the right limb of healthy participants. In paretic limbs, mean SUR did not differ between the three muscle groups, or between individual muscles within each muscle group. SURs of paretic lower leg muscles and gluteus minimus muscle were significantly smaller than those of non-paretic limb and healthy participants (p < 0.05). In the non-paretic limb of hemiparetic participants, SUR of the lower leg muscles was larger than that of the thigh muscles (p < 0.05). Unexpectedly, SURs of medial hamstring and posterior tibial muscles were larger in the non-paretic limb of hemiparetic participants, compared to the right limb of healthy participants (p < 0.05). (18)F-FDG PET is useful to evaluate energy consumption levels of lower extremity muscles during level walking in hemiparetic individuals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app