Add like
Add dislike
Add to saved papers

Effect of oxidative phosphorylation signaling pathway on silkworm midgut following exposure to phoxim.

Organophosphate pesticides are applied widely in the world for agricultural purposes, and their exposures often resulted in non-cocooning of Bombyx mori in China. Silkworm midgut is the major organ for digestion and nutrient absorption, importantly it is also a barrier against foreign substances and chemical pesticides. The purpose of this study was to determine the mechanism of oxidative injury in silkworm midgut with phoxim induction. The results showed that the transcription level of oxidative phosphorylation signaling pathway genes of midgut under phoxim stress. Digital gene expression (DGE) analysis revealed that 24 electron transport chain (ETC)-related genes were upregulated. Quantitative real time polymerase chain reaction results indicated that the ETC the genes encoding NADH-CoQ1, Succinic-Q, cyt c reductase-S, cyt c oxidase-S, cytochrome c oxidase polypeptide IV, ATP synthase, and vacuolar H+ ATP synthase were all significantly up-regulated by 1.50-, 1.31-, 1.42-, 1.44-, 1.70-, 2.03- and 1.43-fold, respectively. Phoxim induction enhanced the activity of ETC complex in mitochondria, and induced the accumulation of ROS in midgut. These results indicated that trace phoxim enhanced respiration in midgut, and the imbalance between the activity changes of ETC may led to reactive oxygen species accumulation. The ETC of mitochondria may be potential biomarkers of midgut toxicity in B. mori caused by phoxim exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 167-175, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app