Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prediction of kinase-substrate relations based on heterogeneous networks.

Protein phosphorylation catalyzed by kinases plays essential roles in various intracellular processes. With an increasing number of phosphorylation sites verified experimentally by high-throughput technologies and assigned as substrates of specific kinases, prediction of potential kinase-substrate relations (KSRs) attracts increasing attention. Although a large number of computational methods have been designed, most of them only focus on local protein sequence information. A few KSR prediction approaches integrate protein-protein interaction and protein sequence information into existing machine learning algorithms at the cost of high feature dimensions or reduced sensitivity. In this work, we introduce two novel heterogeneous networks, HetNet-PPI and HetNet-SEQ, by incorporating PPI and similarity of protein sequences into the kinase-substrate heterogeneous networks, respectively. Based on these two heterogeneous networks, we further propose two new KSR prediction methods, HeteSim-PPI and HeteSim-SEQ, by adopting the HeteSim algorithm, which is recently proposed for relevance measure in heterogeneous information networks. Comprehensive evaluation results of the two methods show that similarity of protein sequences is more effective in improving KSR prediction performance as HeteSim-SEQ outperforms HeteSim-PPI in most cases. Further comparison results demonstrate that HeteSim-SEQ is superior to existing methods including BDT, SVM and iGPS, suggesting the effectiveness of the proposed network-based method in predicting potential KSRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app