Journal Article
Review
Add like
Add dislike
Add to saved papers

Decoding the molecular mechanisms of neuronal migration using in utero electroporation.

During the development of the cerebral cortex, excitatory neurons are produced in the ventricular zone lining the lateral ventricle or in the adjacent subventricular zone and migrate toward the brain surface in a process known as radial migration. During radial migration, neurons undergo multiple steps including a multipolar cell phase, a multipolar-bipolar transition, and a locomotion phase. Many genes tightly regulate the cell behavior in each phase. We have established an in utero electroporation method as a rapid in vivo gene transfer system, and this system has greatly contributed to recent advances in our knowledge of the molecular mechanisms underlying each migration phase. Here, we review the cell behaviors of neurons during each phase of radial migration and the molecular mechanisms involved in these phases. Knockdown or functional blocking of these genes using in utero electroporation results in various migration defects and abnormal cell morphologies. Here, we describe these phenotypes as much as possible so that this review can be used as a chart to evaluate the phenotypes of novel gene knockdown experiments. We also discuss the recent application of in utero electroporation in studies examining the functions of neurodevelopmental disorder-related genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app