JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Transcriptome analysis of GVHD reveals aurora kinase A as a targetable pathway for disease prevention.

Graft-versus-host disease (GVHD) is the most common complication of hematopoietic stem cell transplant (HCT). However, our understanding of the molecular pathways that cause this disease remains incomplete, leading to inadequate treatment strategies. To address this, we measured the gene expression profile of nonhuman primate (NHP) T cells during acute GVHD. Utilizing microarray technology, we measured the expression profiles of CD3(+) T cells from five cohorts: allogeneic transplant recipients receiving (i) no immunoprophylaxis (No Rx), (ii) sirolimus monotherapy (Siro), (iii) tacrolimus-methotrexate (Tac-Mtx), as well as (iv) autologous transplant recipients (Auto) and (v) healthy controls (HC). This comparison allowed us to identify transcriptomic signatures specific for alloreactive T cells and determine the impact of both mTOR (mechanistic target of rapamycin) and calcineurin inhibition on GVHD. We found that the transcriptional profile of unprophylaxed GVHD was characterized by significant perturbation of pathways regulating T cell proliferation, effector function, and cytokine synthesis. Within these pathways, we discovered potentially druggable targets not previously implicated in GVHD, prominently including aurora kinase A (AURKA). Utilizing a murine GVHD model, we demonstrated that pharmacologic inhibition of AURKA could improve survival. Moreover, we found enrichment of AURKA transcripts both in allo-proliferating T cells and in sorted T cells from patients with clinical GVHD. These data provide a comprehensive elucidation of the T cell transcriptome in primate acute GVHD and suggest that AURKA should be considered a target for preventing GVHD, which, given the many available AURKA inhibitors in clinical development, could be quickly deployed for the prevention of GVHD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app