Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

IL-17A increases TNF-α-induced COX-2 protein stability and augments PGE2 secretion from airway smooth muscle cells: impact on β2 -adrenergic receptor desensitization.

Allergy 2016 March
BACKGROUND: IL-17A plays an important role in respiratory disease and is a known regulator of pulmonary inflammation and immunity. Recent studies have linked IL-17A with exacerbation in asthma and COPD. We have shown that the enzyme cyclooxygenase-2 (COX-2) and its prostanoid products, prostaglandin E2 (PGE2 ) in particular, are key contributors in in vitro models of infectious exacerbation; however, the impact of IL-17A was not known.

METHODS AND RESULTS: We address this herein and show that IL-17A induces a robust and sustained upregulation of COX-2 protein and PGE2 secretion from airway smooth muscle (ASM) cells. COX-2 can be regulated at transcriptional, post-transcriptional and/or post-translational levels. We have elucidated the underlying molecular mechanisms responsible for the sustained upregulation of TNF-α-induced COX-2 by IL-17A in ASM cells and show that is not via increased COX-2 gene expression. Instead, TNF-α-induced COX-2 upregulation is subject to regulation by the proteasome, and IL-17A acts to increase TNF-α-induced COX-2 protein stability as confirmed by cycloheximide chase experiments. In this way, IL-17A acts to amplify the COX-2-mediated effects of TNF-α and greatly enhances PGE2 secretion from ASM cells.

CONCLUSION: As PGE2 is a multifunctional prostanoid with diverse roles in respiratory disease, our studies demonstrate a novel function for IL-17A in airway inflammation by showing for the first time that IL-17A impacts on the COX-2/PGE2 pathway, molecules known to contribute to disease exacerbation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app