Add like
Add dislike
Add to saved papers

Multifunctional and Spatially Controlled Bioconjugation to Melt Coextruded Nanofibers.

Polymer Chemistry 2015 August 22
Polymeric fibers have drawn recent interest for uses in biomedical technologies that span drug delivery, regenerative medicine, and wound-healing patches, amongst others. We have recently reported a new class of fibrous biomaterials fabricated using coextrusion and a photochemical modification procedure to introduce functional groups onto the fibers. In this report, we extend our methodology to control surface modification density, describe methods to synthesize multifunctional fibers, and provide methods to spatially control functional group modification. Several different functional fibers are reported for bioconjugation, including propargyl, alkene, alkoxyamine, and ketone modified fibers. The modification scheme allows for control over surface density and provides a handle for downstream functionalization with appropriate bioconjugation chemistries. Through the use of multiple orthogonal chemistries, fiber chemistry could be differentially controlled to append multiple modifications. Spatial control on the fiber surface was also realized, leading to reverse gradients of small molecule dyes. One application is demonstrated for pH-responsive drug delivery of an anti-cancer therapeutics. Finally, the introduction of orthogonal chemical modifications onto these fibers allowed for modification with multiple cell-responsive peptides providing a substrate for osteoblast differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app