Add like
Add dislike
Add to saved papers

Characteristics of spinal microglia in aged and obese mice: potential contributions to impaired sensory behavior.

BACKGROUND: Both aging and obesity have been recognized widely as health conditions that profoundly affect individuals, families and the society. Aged and obese people often report altered pain responses while underlying mechanisms have not been fully elucidated. We aim to understand whether spinal microglia could potentially contribute to altered sensory behavior in aged and obese population.

RESULTS: In this study, we monitored pain behavior in adult (6 months) and aged (17 months) mice fed with diet containing 10 % or 60 % Kcal fat. The group of young adult (3 months) mice was included as theoretical baseline control. Compared with lean adult animals, diet-induced-obese (DIO) adult, lean and DIO-aged mice showed enhanced painful response to heat and cold stimuli, while exhibiting hyposensitivity to mechanical stimulation. The impact of aging and obesity on microglia properties was evidenced by an increased microglial cell density in the spinal cords, stereotypic morphological changes and polarization towards pro-inflammatory phenotype. Obesity strikingly exacerbated the effect of aging on spinal microglia.

CONCLUSION: Aging/obesity altered microglia properties in the spinal cords, which can dysregulate neuron-microglia crosstalk and impair physiological pain signal transmission. The inflammatory functions of microglia have special relevance for understanding of abnormal pain behavior in aged/obese populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app