Add like
Add dislike
Add to saved papers

PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways.

Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1) is crucial for cellular metabolism and redox signaling, the main objective of this study was to investigate whether there is a relationship between PGC-1 expression, the proliferation of breast cancer cells and the mechanisms involved. We initially assessed PGC-1β expression in complementary DNA (cDNA) from breast tumor of patients bearing luminal A, luminal B, and HER2-overexpressed and triple negative tumors. Our data showed that PGC-1β expression is increased in patients bearing HER2-overexpressing tumors as compared to others subtypes. Using quantitative PCR and immunoblotting, we showed that breast cancer cells with HER2-amplification (SKBR-3) have greater expression of PGC-1β as compared to a non-tumorous breast cell (MCF-10A) and higher proliferation rate. PGC-1β expression was knocked down with short interfering RNA in HER2-overexpressing cells, and cells decreased proliferation. In these PGC-1β-inhibited cells, we found increased citrate synthase activity and no marked changes in mitochondrial respiration. Glycolytic pathway was decreased, characterized by lower intracellular lactate levels. In addition, after PGC-1β knockdown, SKBR-3 cells showed increased reactive oxygen species production, no changes in antioxidant activity, and decreased expression of ERRα, a modulator of metabolism. In conclusion, we show an association of HER2-overexpression and PGC-1β. PGC-1β knockdown impairs HER2-overexpressing cells proliferation acting on ERRα signaling, metabolism, and redox balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app