JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

The effect of dietary modulation of sulfur amino acids on cystathionine β synthase-deficient mice.

Cystathionine β synthase (CBS) is a key enzyme in the methionine and cysteine metabolic pathway, acting as a metabolic gatekeeper to regulate the flow of fixed sulfur from methionine to cysteine. Mutations in the CBS gene cause clinical CBS deficiency, a disease characterized by elevated plasma total homocysteine (tHcy) and methionine and decreased plasma cysteine. The treatment goal for CBS-deficient patients is to normalize the metabolic values of these three metabolites using a combination of vitamin therapy and dietary manipulation. To better understand the effectiveness of nutritional treatment strategies, we have performed a series of long-term dietary manipulation studies using our previously developed Tg-I278T Cbs(-/-) mouse model of CBS deficiency and sibling Tg-I278T Cbs(+/-) controls. Tg-I278T Cbs(-/-) mice have undetectable levels of CBS activity, extremely elevated plasma tHcy, modestly elevated plasma methionine, and low plasma cysteine. They exhibit several easily assayable phenotypes, including osteoporosis, loss of fat mass, reduced life span, and facial alopecia. The diets used in these studies differed in the amounts of sulfur amino acids or sulfur amino acid precursors. In this review, we will discuss our findings and their relevance to CBS deficiency and the concept of gene-diet interaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app