Add like
Add dislike
Add to saved papers

microRNA-762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression.

Cell Proliferation 2015 December
OBJECTIVES: miRNAs play crucial roles in human tumourigenesis. This study was performed to measure expression and function of miR-762 in breast cancer.

MATERIALS AND METHODS: Expression of miR-762 in breast tissues and cell lines (SK-BR-3, DA-MB-435s, MCF-7 and MDA-MB-231, HBL-100) was measured by using real-time RT-PCR. We restored expression of miR-762 in MCF-7 cells to measure its functional roles. Luciferase assays were performed to reveal the target gene of miR-762.

RESULTS: Expression of miR-762 was high in both breast cancer cell lines and specimens, and its overexpression increased breast cancer cell proliferation and invasion. Interferon regulatory factor 7 (IRF7) is a direct target of miR-762 and overexpression of miR-762 reduced expression of IRF7. Moreover, IRF7 was repressed, its levels inversely correlated to miR-762 expression. IRF7 rescued miR-762-induced cell invasion and proliferation.

CONCLUSIONS: These results demonstrate that miR-762 tumour effect was achieved by targeting IRF7 in human breast cancer specimens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app