Add like
Add dislike
Add to saved papers

Noninvasive Monitoring and Evaluation of the Renal Structure and Function in a Mouse Model of Unilateral Ureteral Occlusion Using Microcomputed Tomography.

Mouse unilateral ureteral occlusion (UUO) is widely used as a model of renal experimental obstructive nephropathy with interstitial fibrosis. Microcomputed tomography (micro-CT) imaging has the potential to produce quantitative images. The aim of this study was to establish standard images of micro-CT for renal anatomic and functional evaluations in a mouse model of UUO. UUO was induced in adult male mice BALB/c. In total, 27 mice were used in this study. Three mice per group (a total of 6 groups) were examined with contrast-enhanced micro-CT prior to UUO (day 0) and on days 1, 3, 5, 7, 10, and 14 after UUO. In order to determine the histopathologic correlations at each point in time, contrast-enhanced micro-CT imaging was performed in the 18 remaining mice. All animals were sacrificed, and both kidneys were harvested after the final micro-CT examination. UUO resulted in hydronephrosis and changes in the renal parenchyma. The predominant alteration was substantial changes in the hemodynamics of the renal vascular system after ureteral obstruction for 24 hours or longer, which may be resulting from increased action of vasoconstrictors versus vasodilators. The renal parenchyma was significantly reduced after 1 week, and the features of the histologic changes supported the findings of the micro-CT images. In the contralateral unobstructed kidneys, the images showed a normal structure and function and the pathohistology revealed a normal histoarchitecture. Micro-CT is a useful tool for providing noninvasive monitoring and evaluating the renal structure and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app