JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Immediate postoperative changes in synthetic meshes - In vivo measurements.

BACKGROUND AND OBJECTIVE: Immediate post-operative structural changes in implanted synthetic meshes are believed to contribute to graft related complications. Our aim was to observe in vivo dimensional changes at the pore level.

METHOD: Two different polyvinylidine fluoride (PVDF) meshes, CICAT and ENDOLAP (Dynamesh, FEG Textiltechnik) were implanted in 18 female Sprague Dawley (n=9/group). The meshes (30×25mm(2)) were overlaid on a full thickness incision (2×1cm(2)) and sutured on the abdominal wall. All animals underwent microCT imaging (res. 35µm/px) at day 1 and 15 postsurgery. A customized procedure was developed to semi-automatically detect the pore centers from the microCT dataset. Horizontal (transverse) and vertical (cranio-caudal) inter-pore distances were then recorded. The overall mesh dimensions were also noted from 3D models generated from in vivo microCT datasets. Inter-pore distances and the overall dimensions from microCT images of the meshes set in agarose gel phantom were used as controls. Mann-Whitney U test was done to check for significant differences.

RESULTS: Number of measurable vertical and horizontal inter-pore distances was 56.5(10.5) and 54.5(14.5) [median (IQR)] per animal. At day 1, we observed a 4.3% (CICAT) and 4.6% (ENDOLAP) increase in vertical inter-pore distance when compared to controls (p<0.001, p=0.003, respectively). Measurements fell back to phantom values by day 15 (3.7% and 4.9% decrease compared to day 1, p<0.001 for both). The horizontal inter-pore distances for ENDOLAP increased by 1.4% (p=0.003) during the two weeks period. The overall mesh dimensions did not change significantly day 1 and day 15. The in vivo measurement of the overall mesh dimensions demonstrated a 15.9% reduction in mesh area as compared to that in phantom controls.

CONCLUSION: We report for the first time, in vivo changes in pore dimensions of a textile implant. This study clearly demonstrates the dynamic nature of a textile implant during the tissue integration process. For studied PVDF meshes, the process of tissue integration leads to limited but significant reduction over time as observed at the pore level. Remarkably the extent of this reduction does not account for the change in overall mesh dimensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app