JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-resolution NMR spectroscopy in inhomogeneous fields.

High-resolution NMR spectroscopy, providing information on chemical shifts, J coupling constants, multiplet patterns, and relative peak areas, is a mainstream tool for analysis of molecular structures, conformations, compositions, and dynamics. Generally, a homogeneous magnetic field is a prerequisite for obtaining high-resolution NMR information. Magnetic field inhomogeneity, whether from non-ideal experimental conditions or from intrinsic magnetic susceptibility discontinuities in samples, represents a hurdle for applications of high-resolution NMR. Numerous techniques have been proposed for measuring high-resolution NMR spectra free from the influence of inhomogeneous magnetic fields. Besides developments and improvements in NMR instrumentation, various types of experimental approaches have been established for recovering NMR information in inhomogeneous magnetic fields. Three main types are systematically described in this review. In addition, other high-resolution NMR approaches or data processing methods are also briefly described. All high-resolution NMR approaches covered in this review have individual advantages and disadvantages in practical applications, and no one technique is applicable to all practical circumstances. Hence, they are complementary for high-resolution NMR applications in inhomogeneous fields. The underlying mechanisms of these approaches are presented, together with analyses of their applicability and efficiency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app