Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

C-kit(+) resident cardiac stem cells improve left ventricular fibrosis in pressure overload.

Stem Cell Research 2015 November
To investigate the effect of resident cardiac stem cells (RCSC) on myocardial remodeling, c-kit(+) RCSC were isolated from hearts of C57Bl/6-Tg (ACTb-EGFP)1Osb/J mice expressing green fluorescent protein and expanded in vitro. C57/Bl6N wildtype mice were subjected to transverse aortic constriction (TAC, 360 μm) or sham-operation. 5 × 10(5) c-kit(+) RCSC or c-kit(-) cardiac cells or cell buffer were infused intravenously 24 h post-surgery (n = 11-24 per group). Hypoxia-inducible factor-1α-mRNA in left ventricles of TAC mice was enhanced 24 h after transplantation. 35 days post-TAC, the density of c-kit(+) RCSC in the myocardium was increased by two-fold. Infusion of c-kit(+) resident cardiac stem cells post-TAC markedly reduced myocardial fibrosis and the expression of collagen Iα2 and connective tissue growth factor. Infusion of c-kit(-) cardiac cells did not ameliorate cardiac fibrosis. In parallel, expression of pro-angiogenic mediators (FGFb, IL-4, IL-6, TGFß, leptin) and the density of CD31(+) and CD31(+) GFP(+) endothelial cells were increased. Transplantation reduced brain- and atrial natriuretic peptides and the cardiomyocyte cross-sectional area. Infusion of c-kit(+) resident cardiac stem reduced the rate of apoptosis and oxidative stress in cardiomyocytes and in non-cardiomyocyte cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app