Historical Article
Journal Article
Add like
Add dislike
Add to saved papers

A Stochastic Model for the Interbreeding of Two Populations Continuously Sharing the Same Habitat.

We propose and solve a stochastic mathematical model of general applicability to interbreeding populations which share the same habitat. Resources are limited so that the total population size is fixed by environmental factors. Interbreeding occurs during all the time of coexistence until one of the two population disappears by a random fluctuation. None of the two populations has a selective advantage. We answer the following questions: How long the two populations coexist and how genetically similar they become before the extinction of one of the two? how much the genetic makeup of the surviving population changes by the contribution of the disappearing one? what it is the number of interbreeding events given the observed introgression of genetic material? The model was originally motivated by a paleoanthropological problem concerning the interbreeding of Neanderthals and African modern humans in Middle East which is responsible for the fraction of Neanderthal genes (1-4%) in present Eurasian population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app