JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Design a cadA-targeted DNA probe for screening of potential bacterial cadmium biosorbents.

Due to their metal removal ability, bacterial biosorbents can be effectively used for the treatment of wastewaters containing heavy metals. Searching for bacterial biosorbents for hazardous heavy metals like cadmium is a pivotal for remediation efforts. The gene cadA, that mediates resistance to cadmium over an ATP-dependent efflux mechanism, provides a good target for the selection of potential cadmium biosorbents. For this reason, in this study, a 36-mer-oligonucleotide DNA probe based on the entire 3.5-kb BglII-XbaI fragment of cadA operon from staphylococcal plasmid pI258 was prepared by using Vector NTI Express software. Under the hybridization conditions of 46 °C, 50 % formamide, and 0.028 M NaCl, the designed cadA probe appeared to be highly specific to the cadA-positive Staphylococcus warneri and Delftia acidovorans isolates tested. The results indicated that the newly designed cadA-targeted DNA probe has potential as a specific, sensitive, and quantitative tool in selecting and in situ screening of potential cadmium biosorbents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app