Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Asymptotic Model of Fluid-Tissue Interaction for Mitral Valve Dynamics.

The vortex formation process inside the left ventricle is intrinsically connected to the dynamics of the mitral leaflets while they interact with the flow crossing the valve during diastole. The description of the dynamics of a natural mitral valve still represents a challenging issue, especially because its material properties are not measurable in vivo. Medical imaging can provide some indications about the geometry of the valve, but not about its mechanical properties. In this work, we introduce a parametric model of the mitral valve geometry, whose motion is described in the asymptotic limit under the assumption that it moves with the flow, without any additional resistance other than that given by its shape, and without the need to specify its material properties. The mitral valve model is coupled with a simple description of the left ventricle geometry, and their dynamics is solved numerically together with the equations ruling the blood flow. The intra-ventricular flow is analyzed in its relationship with the valvular motion. It is found that the initial valve opening anticipates the peak velocity of the Early filling wave with little influence of the specific geometry; while subsequent closure and re-opening are more dependent on the intraventricular vortex dynamics and thus on the leaflets' geometry itself. The limitations and potential applications of the proposed model are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app