Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

2-Aminoacrylate Stress Induces a Context-Dependent Glycine Requirement in ridA Strains of Salmonella enterica.

Journal of Bacteriology 2016 Februrary 2
UNLABELLED: The reactive enamine 2-aminoacrylate (2AA) is a metabolic stressor capable of damaging cellular components. Members of the broadly conserved Rid (RidA/YER057c/UK114) protein family mitigate 2AA stress in vivo by facilitating enamine and/or imine hydrolysis. Previous work showed that 2AA accumulation in ridA strains of Salmonella enterica led to the inactivation of multiple target enzymes, including serine hydroxymethyltransferase (GlyA). However, the specific cause of a ridA strain's inability to grow during periods of 2AA stress had yet to be determined. Work presented here shows that glycine supplementation suppressed all 2AA-dependent ridA strain growth defects described to date. Depending on the metabolic context, glycine appeared to suppress ridA strain growth defects by eliciting a GcvB small RNA-dependent regulatory response or by serving as a precursor to one-carbon units produced by the glycine cleavage complex (GCV). In either case, the data suggest that GlyA is the most physiologically sensitive target of 2AA inactivation in S. enterica. The universally conserved nature of GlyA among free-living organisms highlights the importance of RidA in mitigating 2AA stress.

IMPORTANCE: The RidA stress response prevents 2-aminoacrylate (2AA) damage from occurring in prokaryotes and eukaryotes alike. 2AA inactivation of serine hydroxymethyltransferase (GlyA) from Salmonella enterica restricts glycine and one-carbon production, ultimately reducing fitness of the organism. The cooccurrence of genes encoding 2AA production enzymes and serine hydroxy-methyltransferase (SHMT) in many genomes may in part underlie the evolutionary selection for Rid proteins to maintain appropriate glycine and one-carbon metabolism throughout life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app