Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Human Peroxin PEX3 Is Co-translationally Integrated into the ER and Exits the ER in Budding Vesicles.

Traffic 2016 Februrary
The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N-terminal transmembrane segment (TMS) of ribosome-bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3-containing ribosome•nascent chain complex (RNC) to the translocon, where an ordered multistep pathway integrates the nascent chain into the membrane adjacent to translocon proteins Sec61α and TRAM. This insertion of PEX3 into the ER is physiologically relevant because PEX3 then exits the ER via budding vesicles in an ATP-dependent process. This study identifies early steps in human peroxisomal biogenesis by demonstrating sequential stages of PMP passage through the mammalian ER.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app