Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tetraspanin CD37 Regulates β2 Integrin-Mediated Adhesion and Migration in Neutrophils.

Journal of Immunology 2015 December 16
Deciphering the molecular basis of leukocyte recruitment is critical to the understanding of inflammation. In this study, we investigated the contribution of the tetraspanin CD37 to this key process. CD37-deficient mice showed impaired neutrophil recruitment in a peritonitis model. Intravital microscopic analysis indicated that the absence of CD37 impaired the capacity of leukocytes to follow a CXCL1 chemotactic gradient accurately in the interstitium. Moreover, analysis of CXCL1-induced leukocyte-endothelial cell interactions in postcapillary venules revealed that CXCL1-induced neutrophil adhesion and transmigration were reduced in the absence of CD37, consistent with a reduced capacity to undergo β2 integrin-dependent adhesion. This result was supported by in vitro flow chamber experiments that demonstrated an impairment in adhesion of CD37-deficient neutrophils to the β2 integrin ligand, ICAM-1, despite the normal display of high-affinity β2 integrins. Superresolution microscopic assessment of localization of CD37 and CD18 in ICAM-1-adherent neutrophils demonstrated that these molecules do not significantly cocluster in the cell membrane, arguing against the possibility that CD37 regulates β2 integrin function via a direct molecular interaction. Moreover, CD37 ablation did not affect β2 integrin clustering. In contrast, the absence of CD37 in neutrophils impaired actin polymerization, cell spreading and polarization, dysregulated Rac-1 activation, and accelerated β2 integrin internalization. Together, these data indicate that CD37 promotes neutrophil adhesion and recruitment via the promotion of cytoskeletal function downstream of integrin-mediated adhesion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app