JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Understanding the Basics of NGS: From Mechanism to Variant Calling.

Identifying disease-causing mutations in DNA has long been the goal of genetic medicine. In the last decade, the toolkit for discovering DNA variants has undergone rapid evolution: mutations that were historically discovered by analog approaches like Sanger sequencing and multiplex ligation-dependent probe amplification ("MLPA") can now be decoded from a digital signal with next-generation sequencing ("NGS"). Given the explosive growth of NGS-based tests in the clinic, it is of the utmost importance that medical practitioners have a fundamental understanding of the newest NGS methodologies. To that end, here we provide a very basic overview of how NGS works, with particular emphasis on the close resemblance between the underlying chemistry of Sanger sequencing and NGS. Using a pair of simple analogies, we develop an intuitive framework for understanding how high-confidence detection of single-nucleotide polymorphisms, indels, and large deletions/duplications is possible with NGS alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app