JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deletion of Periostin Protects Against Atherosclerosis in Mice by Altering Inflammation and Extracellular Matrix Remodeling.

OBJECTIVE: Periostin is a secreted protein that can alter extracellular matrix remodeling in response to tissue injury. However, the functional role of periostin in the development of atherosclerotic plaques has yet to be described despite its observed induction in diseased vessels and presence in the serum.

APPROACH AND RESULTS: Hyperlipidemic, apolipoprotein E-null mice (ApoE(-/) (-)) were crossed with periostin (Postn(-/-)) gene-deleted mice and placed on a high-fat diet for 6 or 14 weeks to induce atherosclerosis. En face analysis of aortas showed significantly decreased lesion areas of ApoE(-/-) Postn(-/-) mice compared with ApoE(-/-) mice, as well as a reduced inflammatory response with less macrophage content. Moreover, diseased aortas from ApoE(-/-) Postn(-/-) mice displayed a disorganized extracellular matrix with less collagen cross linking and smaller fibrotic caps, as well as increased matrix metalloproteinase-2, metalloproteinase-13, and procollagen-lysine, 2-oxoglutarate 5-dioxygenase-1 mRNA expression. Furthermore, the loss of periostin was associated with a switch in vascular smooth muscle cells toward a more proliferative and synthetic phenotype. Mechanistically, the loss of periostin reduced macrophage recruitment by transforming growth factor-β in cellular migration assays.

CONCLUSIONS: These are the first genetic data detailing the function of periostin as a regulator of atherosclerotic lesion formation and progression. The data suggest that periostin could be a therapeutic target for atherosclerotic plaque formation through modulation of the immune response and extracellular matrix remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app