Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Flexible data integration and curation using a graph-based approach.

Bioinformatics 2016 March 16
MOTIVATION: The increasing diversity of data available to the biomedical scientist holds promise for better understanding of diseases and discovery of new treatments for patients. In order to provide a complete picture of a biomedical question, data from many different origins needs to be combined into a unified representation. During this data integration process, inevitable errors and ambiguities present in the initial sources compromise the quality of the resulting data warehouse, and greatly diminish the scientific value of the content. Expensive and time-consuming manual curation is then required to improve the quality of the information. However, it becomes increasingly difficult to dedicate and optimize the resources for data integration projects as available repositories are growing both in size and in number everyday.

RESULTS: We present a new generic methodology to identify problematic records, causing what we describe as 'data hairball' structures. The approach is graph-based and relies on two metrics traditionally used in social sciences: the graph density and the betweenness centrality. We evaluate and discuss these measures and show their relevance for flexible, optimized and automated data curation and linkage. The methodology focuses on information coherence and correctness to improve the scientific meaningfulness of data integration endeavors, such as knowledge bases and large data warehouses.

CONTACT: [email protected]

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app