Add like
Add dislike
Add to saved papers

Analyzing the anti-ischemia-reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK.

Recent studies have demonstrated that ginsenoside Rb1 protects the myocardium from ischemia-reperfusion (I/R) injury. However, the precise mechanisms for this protection have not been determined. This study aimed to determine whether the attenuation of I/R-induced myocardial injury by ginsenoside Rb1 (GS Rb1) is due to inhibition of p38α mitogen-activated protein kinase (MAPK). Sprague-Dawley rats were distributed among 6 treatment groups: sham group; I/R group; p38 MAPK inhibitor SB203580 group (SB + I/R); GS Rb1 group (GS + I/R); p38 MAPK agonist anisomycin group (Ani + I/R); and the GS Rb1 + Ani group (GS + Ani + I/R). All of the anaesthetized rats, except those in the sham group, underwent an open-chest procedure that involved 30 min of myocardial ischemia followed by 2 h of reperfusion. Myocardial infarction size (MIS), caspase-3 activity, and levels of the cytokine tumor necrosis factor alpha (TNF-α) in the myocardium were monitored. The expressions of p38α MAPK, caspase-3, and TNF-α in the myocardium were assayed. GS Rb1 reduced MIS and attenuated caspase-3 activity and the levels of TNF-α in the myocardium. Protein expression of total p38α MAPK was not significantly altered. In the Ani + I/R and I/R groups, the levels of phospho-p38α MAPK were significantly increased compared with the sham group, and these increased levels were reduced with GS Rb1. Hemodynamic parameters were not significantly different between the GS + I/R and SB + I/R groups. GS Rb1 exerts an anti-apoptotic effect that protects against I/R injury by inhibiting p38α MAPK phosphorylation, suggesting that GS Rb1-mediated protection requires the inhibition of p38α MAPK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app