Add like
Add dislike
Add to saved papers

Experimental Spinal Stenosis in Cats: New Insight in Mechanisms of Hydrocephalus Development.

Brain Pathology 2015 November 10
In our new experimental model of cervical stenosis without inflammation we have tested hypothesis that cranio-spinal communication impairment could lead to hydrocephalus development. Spinal and cranial cerebrospinal fluid (CSF) space separation was obtained with positioning of plastic semi-ring in epidural space at C2 level in cats. Brain ventricles planimetry, and CSF pressure recording in lateral ventricle (LV) and lumbar subarachnoid space (LSS) were performed in acute and subchronic experiments. In all experiments opening CSF pressures were normal. However, in acute experiments, an infusion of artificial CSF into the LV led to increase of CSF pressure and significant gradient pressure development between LV and LSS due to limited pressure transmission. After 3 or 6 weeks spinal cord atrophy was observed at the site of cervical stenosis, and pressure transmission from LV to LSS was improved as a consequence of spinal tissue atrophy. Planimetry of both the coronal brain slices and the ventricles' surface showed that control ventricular surface was 0.6±0.1% (n=5), and 1.6±0.2% (n=4) in animals with subchronic cervical stenosis (p<0.002). These results support the mentioned hypothesis claiming that CSF volume cranio-spinal displacement impairment could start pathophysiological processes leading to development of hydrocephalus. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app