JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Stimulant medication effects on growth and bone age in children with attention-deficit/hyperactivity disorder: a prospective cohort study.

Stimulant medication is known to cause transient weight loss and slowing down of growth, but whether it delays physical maturation is unclear. We studied growth and bone age over the first 3 years of treatment in children with attention-deficit/hyperactivity disorder (patients) compared with healthy siblings (controls). Bone age was estimated blindly by two independent radiologists using Tanner and Whitehouse version 3. Dexamphetamine or methylphenidate was titrated and continued when clinically indicated. Forty out of 73 patients, together with 22 controls, completed the study. There were no significant growth differences between the two groups at baseline. Despite slower growth on treatment [5.1 cm/year, 95% confidence interval (CI): 4.7-5.5, vs. 6.3 cm/year, 95% CI: 5.7-6.8, P=0.002; and 2.7 kg/year, 95% CI: 2.1-3.3, vs. 4.4 kg/year, 95% CI: 3.5-5.3, P=0.005], the patients showed no significant maturational delay (RUS score: 49 U/year, 95% CI: 44-55, vs. 55 U/year, 95% CI: 47-63, P=0.27). A subgroup of patients underwent serial biochemistry and dual-energy X-ray absorptiometry, recording a significant reduction in fat (5.61±3.56-4.22±3.09 kg, P<0.001) and leptin (3.88±2.87-2.57±1.94 ng/ml, P=0.017). The pattern of change in height z-score over time was modified by the dose of medication (P for interaction=0.024). We found no medication effect on the rate of maturation, which was instead predicted by baseline leptin (P=0.035 controlling for age and sex).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app