JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Mechanisms of fibroblast growth factor signaling in the ovarian follicle.

Fibroblast growth factors (FGFs) have been shown to alter growth and differentiation of reproductive tissues in a variety of species. Within the female reproductive tract, the effects of FGFs have been focused on the ovary, and the most studied one is FGF2, which stimulates granulosa cell proliferation and decreases differentiation (decreased steroidogenesis). Other FGFs have also been implicated in ovarian function, and this review summarizes the effects of members of two subfamilies on ovarian function; the FGF7 subfamily that also contains FGF10, and the FGF8 subfamily that also contains FGF18. There are data to suggest that FGF8 and FGF18 have distinct actions on granulosa cells, despite their apparent similar receptor binding properties. Studies of non-reproductive developmental biology also indicate that FGF8 is distinct from FGF18, and that FGF7 is also distinct from FGF10 despite similar receptor binding properties. In this review, the potential mechanisms of differential action of FGF7/FGF10 and FGF8/FGF18 during organogenesis will be reviewed and placed in the context of follicle development. A model is proposed in which FGF8 and FGF18 differentially activate receptors depending on the properties of the extracellular matrix in the follicle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app