JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Renal Therapeutic Angiogenesis Using a Bioengineered Polymer-Stabilized Vascular Endothelial Growth Factor Construct.

Renovascular disease (RVD) induces renal microvascular (MV) rarefaction that drives progressive kidney injury. In previous studies, we showed that renal vascular endothelial growth factor (VEGF) therapy attenuated MV damage, but did not resolve renal injury at practical clinical doses. To increase the bioavailability of VEGF, we developed a biopolymer-stabilized elastin-like polypeptide (ELP)-VEGF fusion protein and determined its in vivo potential for therapeutic renal angiogenesis in RVD using an established swine model of chronic RVD. We measured single-kidney blood flow (RBF) and GFR and established the degree of renal damage after 6 weeks of RVD. Pigs then received a single stenotic kidney infusion of ELP-VEGF (100 μg/kg), a matching concentration of unconjugated VEGF (18.65 μg/kg), ELP alone (100 μg/kg), or placebo. Analysis of organ distribution showed high renal binding of ELP-VEGF 4 hours after stenotic kidney infusion. Therapeutic efficacy was determined 4 weeks after infusion. ELP-VEGF therapy improved renal protein expression attenuated in RVD, restoring expression levels of VEGF, VEGF receptor Flk-1, and downstream angiogenic mediators, including phosphorylated Akt and angiopoietin-1 and -2. This effect was accompanied by restored MV density, attenuated fibrogenic activity, and improvements in RBF and GFR greater than those observed with placebo, ELP alone, or unconjugated VEGF. In summary, we demonstrated the feasibility of a novel therapy to curtail renal injury. Recovery of the stenotic kidney in RVD after ELP-VEGF therapy may be driven by restoration of renal angiogenic signaling and attenuated fibrogenic activity, which ameliorates MV rarefaction and improves renal function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app