Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Evaluation of low fluoride toothpaste using primary enamel and a validated pH-cycling model.

AIM: To develop and validate pH-cycling model for primary enamel, which was then used to evaluate the anti-caries potential of fluoride toothpastes.

DESIGN: Human primary enamel slabs were subjected to pH-cycling model for 10 days and maintained for 6 h in demineralizing solution and 18 h in remineralizing solution daily. Twice/day, the slabs were treated. To validate it, the treatments were water or solutions containing 62.5, 125, 250, and 375 μg F/mL. Commercial toothpastes containing no fluoride, 500, 1100, and 1450 μg F/g were evaluated. Demineralization was assessed by percentage of surface hardness loss (%SHL) and cross-sectional hardness (ΔS). Fluoride dose-response effect was analysed by quadratic regression and the effects of toothpastes by Tukey's test.

RESULTS: Dose-response effect was found between fluoride concentration and %SHL (R2  = 0.7047; P < 0.01) or ΔS (R2  = 0.4465; P < 0.01). %SHL and ΔS (mean ± SD) for the group treated with 500 μg F/g toothpaste was 36.6 ± 8.0 and 6298.5 ± 1221.3, respectively, which were significantly higher than those treated with 1100 (25.2 ± 8.7; 4565.7 ± 1122) and 1450 μg F/g (24.2 ± 5.2; 2339.1 ± 879.7) toothpastes.

CONCLUSION: The developed pH-cycling model may be used to evaluate and compare the anti-caries potential of toothpaste formulations with low fluoride concentration because it presents dose-response effects on the reduction of primary enamel demineralization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app