Add like
Add dislike
Add to saved papers

Effects of epimuscular myofascial force transmission on sarcomere length of passive muscles in the rat hindlimb.

Physiological Reports 2015 November
Results from imaging studies and finite element models suggest epimuscular myofascial effects on sarcomere lengths in series within muscle fibers. However, experimental evidence is lacking. We evaluated epimuscular myofascial effects on (1) muscle belly, fiber, and mean sarcomere length and (2) sarcomere length distribution within passive fibers of the rat tibialis anterior (TA) and soleus (SO) muscles. Hindlimbs (n = 24) were positioned in predefined knee (55°, 90°, 125°, 160°) and ankle (either 90° or 125°) angles, and fixed in a formaldehyde solution. Varying knee joint angle causes changes in muscle-tendon unit length of SO and TA's synergists, but not of SO and TA. Whole fibers were taken from SO and TA and photographed along their length. Mean sarcomere length was assessed for the entire fiber and for the proximal, intermediate, and distal thirds (fiber segments) separately. Mean sarcomere length of the fiber was not affected by knee angle, neither for SO (mean: 2.44 ± 0.03 μm and 2.19 ± 0.05 μm for ankle angles of 90° and 125°, respectively) nor for TA (mean: 2.33 ± 0.05 μm and 2.51 ± 0.07 μm for ankle angle set to 90° and 125°, respectively). Only for TA, a significant interaction between knee angle and fiber segment was found, indicating changes in the distribution of lengths of in-series sarcomeres. Thus, while epimuscular myofascial force transmission did not cause mean sarcomere length changes within passive SO and TA, it did alter the length distribution of sarcomeres within passive TA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app