Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tuning Helical Chirality in Polycyclic Ladder Systems.

Conceptually and experimentally, a new set of helical model compounds is presented herein that allow correlations between structural features and their expression in the secondary structure to be investigated. A cross-linked oligomer with two strands of mismatching lengths connected in a ladder-type fashion serves as a model system. Compensation for the dimensional mismatch leads to the adoption of a helical arrangement. A strategically placed relay ensures the continuity and uniformity of the helix. Upon exchanging the heteroatomic linkage, the helix responds by increasing or decreasing the torsion of the backbone. Inversion of the relay's substitution pattern causes a distortion of the structure, while maintaining the directionality of the helix. Based on a short synthetic protocol with a modular precursor, four closely related "Geländer" oligomers (Geländer is the German word for bannister) were accessed and fully characterized. XRD analysis for one representative of each helical arrangement and complementary computational studies for the remaining derivatives allowed the impact of the alterations on the secondary structures to be studied. Isolation of pure enantiomers of all new Geländer oligomers provided insight into the racemization kinetics and estimation of the racemization barrier. In silico simulation of the electronic circular dichroism spectra of the model compounds enabled the helicity of the isolated samples to be assigned.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app