Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Attraction to Carbon Dioxide from Feeding Resources and Conspecific Neighbours in Larvae of the Rhinoceros Beetle Trypoxylus dichotomus.

Saprophagous (feeding on decaying matter) insects often use carbon dioxide (CO2) as a cue for finding food. Humus-feeding larvae of the giant rhinoceros beetle Trypoxylus dichotomus exhibit a clumped distribution in natural microhabitats, but the mechanisms driving the distribution were unknown. Herein, I examined whether larvae use CO2 as a cue for fermented humus and aggregate in the vicinity of the food. I found that (i) larvae of T. dichotomus are strongly attracted to CO2, (ii) larvae orient toward highly fermented humus when given a choice between highly and poorly fermented humus, (iii) the highly fermented humus emits more CO2 than the poorly fermented humus, and (iv) larvae grow larger when fed highly fermented humus rather than poorly fermented humus. The clumped distribution of larvae is probably formed along the concentration gradient of CO2 induced by heterogeneity of fermented organic materials in soil. My laboratory experiments also revealed that larvae are chemically attracted to each other. Moreover, CO2 concentrations in soil were increased by the larval respiration, and small amounts of CO2 (much less than emitted during respiration by a single larva) were sufficient for larval attraction. These results suggest that not only response to fermented food resources, but also respiratory CO2 from conspecifics may lead to aggregation. Enhanced densities resulted in reduced weight gain under experimental conditions. However, exploiting a high-value resource at enhanced densities still led to greater body weight compared to individually exploiting a low-value resource. This demonstrates the adaptive value of the response to CO2 sources in this species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app