Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The Impact of Inter-Kernel Movement in the Evolution of Resistance to Dual-Toxin Bt-Corn Varieties in Helicoverpa zea (Lepidoptera: Noctuidae).

Seeds or kernels on hybrid plants are primarily F(2) tissue and will segregate for heterozygous alleles present in the parental F(1) hybrids. In the case of plants expressing Bt-toxins, the F(2) tissue in the kernels will express toxins as they would segregate in any F(2) tissue. In the case of plants expressing two unlinked toxins, the kernels on a Bt plant fertilized by another Bt plant would express anywhere from 0 to 2 toxins. Larvae of corn earworm [Helicoverpa zea (Boddie)] feed on a number of kernels during development and would therefore be exposed to local habitats (kernels) that varied in their toxin expression. Three models were developed for plants expressing two Bt-toxins, one where the traits are unlinked, a second where the traits were linked and a third model assuming that maternal traits were expressed in all kernels as well as paternally inherited traits. Results suggest that increasing larval movement rates off of expressing kernels tended to increase durability while increasing movement rates off of nonexpressing kernels always decreased durability. An ideal block refuge (no pollen flow between blocks and refuges) was more durable than a seed blend because the refuge expressed no toxins, while pollen contamination from plants expressing toxins in a seed blend reduced durability. A linked-trait model in an ideal refuge model predicted the longest durability. The results suggest that using a seed-blend strategy for a kernel feeding insect on a hybrid crop could dramatically reduce durability through the loss of refuge due to extensive cross-pollination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app