Add like
Add dislike
Add to saved papers

Repetitive Hypershear Activates and Sensitizes Platelets in a Dose-Dependent Manner.

Implantation of mechanical circulatory support (MCS) devices-ventricular assist devices and the total artificial heart-has emerged as a vital therapy for advanced and end-stage heart failure. Unfortunately, MCS patients face the requirement of life-long antiplatelet and anticoagulant therapy to combat thrombotic complications resulting from the dynamic and supraphysiologic shear stress conditions associated with such devices, whose effect on platelet activation is poorly understood. We developed a syringe-capillary viscometer-the "platelet hammer"-that repeatedly exposed platelets to average shear stresses up to 1000 dyne/cm(2) for as short as 25 ms. Platelet activation state was measured using a modified prothrombinase assay, with morphological changes analyzed using scanning electron microscopy. We observed an increase in platelet activation state and post-high shear platelet activation rate, or sensitization, with an increase in stress accumulation (SA), the product of shear stress and exposure time. A significant increase in platelet activation state was observed beyond an SA of 1500 dyne-s/cm(2) , with a marked increase in pseudopod length visible beyond an SA of 1000 dyne-s/cm(2) . Utility of the platelet hammer extends to studies of other shear-dependent pathologies, and may assist development of approaches to enhance the safety and effectiveness of MCS devices and objective antithrombotic pharmacotherapy management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app