Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bladder distension improves the dosimetry of organs at risk during intracavitary cervical high-dose-rate brachytherapy.

Brachytherapy 2016 January
PURPOSE: To evaluate dose-volume histograms (DVHs) and dose-surface histograms (DSHs) to analyze bladder distension during cervical brachytherapy.

METHODS: Twenty brachytherapy fractions from five cervical cancer patients were selected. For each fraction, empty and full (200cc of contrasted saline) bladder simulation CT scans existed, one of which was used to plan treatment. An alternative plan was then created with the unused scan. DVH for each fraction was generated for the bladder, rectum, sigmoid colon, and small bowel. Mean DVH dose, D0.1cc, and D2cc were calculated for each organ at risk. Plans were then exported to a MATLAB-based program to generate a DSH.

RESULTS: Full bladder plans showed no difference in bladder D2cc or D0.1cc compared with empty bladder plans; however, bladder mean DVH dose and DSH dose were both significantly reduced. Full bladder plans showed a significant reduction in small intestine D2cc from 2.81 Gy to 1.83 Gy and reduction in D0.1cc from 4.07 Gy to 2.57 Gy (p < 0.05); similarly, sigmoid D2cc was significantly reduced from 4.24 Gy to 3.87 Gy (p < 0.05) and D0.1cc was reduced from 6.12 Gy to 5.61 Gy (p < 0.05) in full bladder plans. Both small intestine and sigmoid also showed reduced mean DVH and DSH dose in full bladder plans. The rectum showed no significant difference in D2cc, D0.1cc, mean DVH, or DSH dose between plans.

CONCLUSIONS: Bladder distension during cervical brachytherapy significantly reduced dose in all DVH and DSH parameters for sigmoid and small intestine with no change in bladder parameters. It reduces dose to organ at risk, but the correlation to toxicity requires further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app