Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Theroa zethus Caterpillars Use Acid Secretion of Anti-Predator Gland to Deactivate Plant Defense.

In North America, notodontid caterpillars feed almost exclusively on hardwood trees. One notable exception, Theroa zethus feeds instead on herbaceous plants in the Euphorbiaceae protected by laticifers. These elongate canals follow leaf veins and contain latex under pressure; rupture causes the immediate release of sticky poisonous exudate. T. zethus larvae deactivate the latex defense of poinsettia and other euphorbs by applying acid from their ventral eversible gland, thereby creating furrows in the veins. The acid secretion softens the veins allowing larvae to compress even large veins with their mandibles and to disrupt laticifers internally often without contacting latex. Acid secretion collected from caterpillars and applied to the vein surface sufficed to create a furrow and to reduce latex exudation distal to the furrow where T. zethus larvae invariably feed. Larvae with their ventral eversible gland blocked were unable to create furrows and suffered reduced growth on poinsettia. The ventral eversible gland in T. zethus and other notodontids ordinarily serves to deter predators; when threatened, larvae spray acid from the gland orifice located between the mouthparts and first pair of legs. To my knowledge, T. zethus is the first caterpillar found to use an antipredator gland for disabling plant defenses. The novel combination of acid application and vein constriction allows T. zethus to exploit its unusual latex-bearing hosts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app