JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Polarized cell migration induces cancer type-specific CD133/integrin/Src/Akt/GSK3β/β-catenin signaling required for maintenance of cancer stem cell properties.

Oncotarget 2015 November 11
CD133 is widely used as a surface marker to isolate cancer stem cells (CSCs). Here we show that in CSCs CD133 contributes to β-catenin-mediated transcriptional activation and to the self-renewal capacity of sphere-forming and side-population (SP) cells in cell lines from brain, colon and lung cancers, but not gastric or breast cancers. In chromatin immunoprecipitation assays, β-catenin binding to the proximal promoter regions of ITGA2-4 and ITGA10-11 in brain, colon and lung cancer cell lines could be triggered by CD133, and β-catenin also bound to the proximal promoter regions of ITGB6 and ITGB8 in cell lines from gastric and breast cancers. CD133 thus induces β-catenin binding and transcriptional activation of diverse targets that are cancer type-specific. Cell migration triggered by wounding CD133+ cells cultured on ECM-coated dishes can induce polarity and lipid raft coalescence, enhancing CD133/integrin signaling and asymmetric cell division. In response to directional cues, integrins, Src and the Par complex were enriched in lipid rafts, and the assembly and activation of an integrated CD133-integrin-Par signaling complex was followed by Src/Akt/GSK3β signaling. The subsequent increase and nuclear translocation of β-catenin may be a regulatory switch to increase drug resistance and stemness properties. Collectively, these findings 1) indicate that a polarized cell migration-induced CD133/integrin/Src/Akt/GSK3β/β-catenin axis is required for maintenance of CSC properties, 2) establish a function for CD133 and 3) support the rationale for targeting CD133 in cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app